Inhibitory influence of protease-activated receptor 2 and E-prostanoid receptor stimulants in lipopolysaccharide models of acute airway inflammation.

نویسندگان

  • Terence Peters
  • Tracy S Mann
  • Peter J Henry
چکیده

Protease-activated receptors (PARs) are widely expressed throughout the respiratory tract, and PAR(2) has been investigated as a potential drug target for inflammatory airway diseases. The primary focus of this study was to determine the extent to which PAR(2)-activating peptides modulate lipopolysaccharide (LPS)-induced airway neutrophilia in mice and establish the underlying mechanisms. Intranasal administration of LPS induced dose- and time-dependent increases in the number of neutrophils recovered from bronchoalveolar lavage (BAL) fluid of mice. Coadministration of the PAR(2)-activating peptide f-LIGRL inhibited LPS-induced neutrophilia at 3 and 6 h after inoculation. PAR(2)-mediated inhibition of LPS-induced neutrophilia was mimicked by prostaglandin E(2) (PGE(2)) and butaprost [selective E-prostanoid (EP(2)) receptor agonist], and blocked by parecoxib (cyclooxygenase 2 inhibitor) and 6-isopropoxy-9-oxoxanthene-2-carboxylic acid (AH6809) (EP(1)/EP(2) receptor antagonist). PAR(2)-activating peptides also blunted early increases in the levels of the key neutrophil chemoattractants keratinocyte-derived chemokine and macrophage inflammatory protein 2 (MIP-2) in the BAL of LPS-exposed mice. However, neither PAR(2)-activating peptides nor PGE(2) inhibited LPS-induced generation of MIP-2 in cultures of primary murine alveolar macrophages In summary, PAR(2)-activating peptides and PGE(2) suppressed LPS-induced neutrophilia in murine airways, independently of an inhibitory action on MIP-2 generation by alveolar macrophages.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of dexamethasone on protease-activated receptor 2-mediated responses in the airways.

Stimulants of protease-activated receptor (PAR)(2) promote the generation of the bronchoprotective prostanoid prostaglandin (PG) E(2) by airway epithelial cells. In contrast, glucocorticoids reduce the levels of PGE(2) in airway epithelial cell cultures by concomitantly inhibiting pathways required for PGE(2) synthesis and facilitating pathways involved in PGE(2) inactivation. The aim of this s...

متن کامل

Prostaglandin E2 inhibits eosinophil trafficking through E-prostanoid 2 receptors.

The accumulation of eosinophils in lung tissue is a hallmark of asthma, and it is believed that eosinophils play a crucial pathogenic role in allergic inflammation. Prostaglandin (PG) E(2) exerts anti-inflammatory and bronchoprotective mechanisms in asthma, but the underlying mechanisms have remained unclear. In this study we show that PGE(2) potently inhibits the chemotaxis of purified human e...

متن کامل

Inhibitors of prostaglandin transport and metabolism augment protease-activated receptor-2-mediated increases in prostaglandin E2 levels and smooth muscle relaxation in mouse isolated trachea.

Stimulants of protease-activated receptor-2 (PAR(2)), such as Ser-Leu-Ile-Gly-Arg-Leu-NH(2) (SLIGRL), cause airway smooth muscle relaxation via the release of the bronchodilatory prostanoid prostaglandin E(2) (PGE(2)). The principal aim of the current study was to determine whether compounds that inhibit PGE(2) reuptake by the prostaglandin transporter [bromocresol green and U46619 (9,11-dideox...

متن کامل

The role of BK channels in antiseizure action of the CB1 receptor agonist ACEA in maximal electroshock and pentylenetetrazole models of seizure in mice

The anticonvulsant effect of cannabinoid compound has been shown in various models of seizure. On the other hand, there are controversial findings about the role of large conductance calcium-activated potassium (BK) channels in the pathogenesis of epilepsy. In this study, the effect of arachidonyl-2′-chloroethylamide (ACEA), a CB1 receptor agonist, and a BK channel antagonist, paxilline, either...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 335 2  شماره 

صفحات  -

تاریخ انتشار 2010